\(\int \cos (c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\) [290]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 83 \[ \int \cos (c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {i \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {2} d}-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d} \]

[Out]

1/2*I*arctanh(1/2*sec(d*x+c)*a^(1/2)*2^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)/d*2^(1/2)-I*cos(d*x+c)*(a+I*a*t
an(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {3571, 3570, 212} \[ \int \cos (c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {i \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {2} d}-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d} \]

[In]

Int[Cos[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(I*Sqrt[a]*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqrt[2]*d) - (I*Cos[c + d*x]
*Sqrt[a + I*a*Tan[c + d*x]])/d

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3570

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2*(a/(b*f)), Subst[
Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b^
2, 0]

Rule 3571

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(a*f*m)), x] + Dist[a/(2*d^2), Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Tan
[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && EqQ[m/2 + n, 0] && GtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}+\frac {1}{2} a \int \frac {\sec (c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx \\ & = -\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}+\frac {(i a) \text {Subst}\left (\int \frac {1}{2-a x^2} \, dx,x,\frac {\sec (c+d x)}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = \frac {i \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {2} d}-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.68 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.05 \[ \int \cos (c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {i e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}-\sqrt {1+e^{2 i (c+d x)}} \text {arctanh}\left (\sqrt {1+e^{2 i (c+d x)}}\right )\right ) \sqrt {a+i a \tan (c+d x)}}{2 d} \]

[In]

Integrate[Cos[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((-1/2*I)*(1 + E^((2*I)*(c + d*x)) - Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]])*Sqr
t[a + I*a*Tan[c + d*x]])/(d*E^(I*(c + d*x)))

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 363 vs. \(2 (68 ) = 136\).

Time = 17.33 (sec) , antiderivative size = 364, normalized size of antiderivative = 4.39

method result size
default \(-\frac {i \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sin \left (d x +c \right )+\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \cos \left (d x +c \right )+i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )-i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \sin \left (d x +c \right )+i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+2 \cos \left (d x +c \right )\right )}{2 d}\) \(364\)

[In]

int(cos(d*x+c)*(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*I/d*(a*(1+I*tan(d*x+c)))^(1/2)*((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-co
s(d*x+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)+(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan((-cos(d*x+c)/(cos(d*x+c)+
1))^(1/2))*cos(d*x+c)+I*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos
(d*x+c)+1))^(1/2))*cos(d*x+c)+(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-I*
(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)+I*arctanh(sin(d*x+c)/
(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+2*cos(d*x+c))

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 184 vs. \(2 (64) = 128\).

Time = 0.25 (sec) , antiderivative size = 184, normalized size of antiderivative = 2.22 \[ \int \cos (c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {\sqrt {2} d \sqrt {-\frac {a}{d^{2}}} \log \left (\frac {2 \, {\left ({\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {-\frac {a}{d^{2}}} + i \, a\right )} e^{\left (-i \, d x - i \, c\right )}}{d}\right ) - \sqrt {2} d \sqrt {-\frac {a}{d^{2}}} \log \left (-\frac {2 \, {\left ({\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {-\frac {a}{d^{2}}} - i \, a\right )} e^{\left (-i \, d x - i \, c\right )}}{d}\right ) - 2 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i\right )}}{4 \, d} \]

[In]

integrate(cos(d*x+c)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*d*sqrt(-a/d^2)*log(2*((d*e^(2*I*d*x + 2*I*c) + d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(-a/d^2)
+ I*a)*e^(-I*d*x - I*c)/d) - sqrt(2)*d*sqrt(-a/d^2)*log(-2*((d*e^(2*I*d*x + 2*I*c) + d)*sqrt(a/(e^(2*I*d*x + 2
*I*c) + 1))*sqrt(-a/d^2) - I*a)*e^(-I*d*x - I*c)/d) - 2*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(I*e^(2*I*d*
x + 2*I*c) + I))/d

Sympy [F]

\[ \int \cos (c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \cos {\left (c + d x \right )}\, dx \]

[In]

integrate(cos(d*x+c)*(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))*cos(c + d*x), x)

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 774 vs. \(2 (64) = 128\).

Time = 0.41 (sec) , antiderivative size = 774, normalized size of antiderivative = 9.33 \[ \int \cos (c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate(cos(d*x+c)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/8*(4*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(I*sqrt(2)*cos(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - sqrt(2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqr
t(a) + (2*sqrt(2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arc
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) - 2*sqrt(2)*arctan2((cos(2*d*x + 2*c)^
2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)
), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c),
cos(2*d*x + 2*c) + 1)) - 1) - I*sqrt(2)*log(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c)
+ 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2
 + 2*cos(2*d*x + 2*c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + 2*(cos(2*d*x + 2*c)^2
+ sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))
+ 1) + I*sqrt(2)*log(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*cos(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1))*sqrt(a))/d

Giac [F]

\[ \int \cos (c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int { \sqrt {i \, a \tan \left (d x + c\right ) + a} \cos \left (d x + c\right ) \,d x } \]

[In]

integrate(cos(d*x+c)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(I*a*tan(d*x + c) + a)*cos(d*x + c), x)

Mupad [F(-1)]

Timed out. \[ \int \cos (c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int \cos \left (c+d\,x\right )\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \]

[In]

int(cos(c + d*x)*(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

int(cos(c + d*x)*(a + a*tan(c + d*x)*1i)^(1/2), x)